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PREFACE

The way in which an organism exchanges heat with its environment

explains several characteristics of its behavior and its preferred habitat.

This module presents a thorough introduction to heat transfer processes

and assumes the reader has a background in calculus and first-year physics.

Emphasis is placed on conduction, convection and evaporation. Radiation

transfer is described in its own module. Ecological examples are used

throughout the text and the problem set.
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INTRODUCTION

The purpose of this module is to further elucidate the physics of

''. the heat transfer processes: radiation, evaporation, conduction, and

convection. An understanding of these processes and their interactions

will provide a clearer ecological interpretation of the thermal energy

environment . Two ideas need to be recalled about the First Law of

Thermodynamics (Zemansky and Van Ness 1966, Stevenson 1979a): first, that

the heat energy budget is based on the conservation principle of the First

Law, and second, that this law can be applied to any system of arbitrary

boundaries. Although organisms seem a natural choice, Collins et al. (1971)

have found t!tie- nasal passageway to be a useful system for study of nasal

vapor recovery. In a previous module (Stevenson 1979b), we considered

a stream, a. leaf, and a spider as welldefined thermodynamic systems for

understanding the biological importance of heat fluxes.

Before we begin to describe the mechanisms of heat transfer, four

examples are taken from the ecological literature to emphasize the

biological effects of temperature and energy budgets. As the examples are

presented, the reader should ask, "How does the thermal environment

influence the distribution, abundance, and life history strategies of the

organism being described?"

Boylen and Brock (1973) have studied the benthic algae of the

Firehole River in Yellowstone National Park. They were interested in

documenting the effects of the heated water entering the river from

geysers. The Firehole was coldest during June when the dischaige was

largest from the snowmelt. Diatoms in the genera Nitzchia, Snydedia,

Rhopalodia, Cocconeis, and Comphonema were present at the sampling
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stations with cooler water temperatures, while green algae, Spirogyra,

Oedogonium, Cladophora, and StigeocZonium, were dominant at the warmer

stations. Biomass was 15 times larger and growth rates five times greater

the heated than the unheated section of the river. Boylen and Brock

cfeel that the Firehole River represents a unique opportunity

to study the biological consequences of elevated water temperature which

are similar to the increases caused by power plants.

The acquisition of nutrients is of fundamental importance to plants.

Chapman (1974) studied the absorption of phosphate along thermal gradients,

where: 1) the average soil temperature changed and the variability was

constant; and 2) where the mean was the same but the fluctuation or

variability was changing. The maximum rate of phosphate absorption was

found to correlate well with the mean soil temperature for each species.

He found that cold-adapted species also increased the root-to-shoot ratio

presumably in order to compensate for the slower absorption rates at colder

temperatures. Species from fluctuating environments showed a'greater rate

of acclimation to phosphate absorption than did species from more constant

environments. These results suggest that plants from different

environments try to maintain similar phosphate uptake rates, which is

accomplished with different physiological adaptations, and that plants can

partition their eneru resources (root and shoot biomass) to achieve this

balance.

Our third example concerns temperature adaptations in amphibians.

Snyder and Weathers (1975) hypothesized that the variability tolerated in

body temperatures of amphibian species would be correlated with the

variability in air temperatup .es. To test this idea, the difference
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between the maximum and lower lethal body temperature for 11 species was

taken from the literature and plotted against the difference in the high

mand low mean monthly air temperatures for a 10-yr period. Figure 1

presents their results and is consistent with their hypothesis.

Several authors (Schneirla et al. 1954, Scherba 1960, Jackson 1957)

have investigated the effects of microclimate on ant activity and nest

structure. Nest and bivouac temperatures are important for egg, larva

and pupa development. Golley and Gentry (1964) found that soil surface

__temperature was an important factor influencing the activity of the

Florida harvester ants. Figure 2 shows that Pogonomyrmes badius was not

active in June and July when the soil surface became very hot during

midday hours. Also there was little activity in February, when soil

surface temperatures were cold. Carlson and Gentry (1973) further found

that continual shading of this species' entry holes causes a large

increase in the migration of colonies to new nest sites. Sunshine is

probably an important energy contribution needed to raise the ant's body

and gallery temperatures.

It is sometimes useful to take a more general outlook. in that

spirit, here are six ecological questions which could be more easily

interpreted and answered with a sound knowledge of heat transfer physics:

1) Does the climate limit the geographical distribution of an

organism?

2) What selective advantage is there to being a particular color,

shape, or size?

3) What microhabitats are available throughout the day to maintain

a thermal balance?
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4) Is there a daily activity pattern that limits prey-predator

interactions or foraging time?

5) What selective advantage is there to be a poikilother; or

homeotherm?

6) How does the thermal balance affect photosynthetic and

transpiration rate of a plant?

The reader should be cautioned that there are other ecological

factors such as competition, predation, and coevolution, which may be

greater selective influences and which may interact with selective

pressures of the physical environment. Predictions from models incorpora-

ting physical processes can often be tested quantitatively which allows

the investigator to compare the importance of the physical process under

consideration with other ecological factors.

HEAT TRANSFER. PROCESSES

Radiation

Radiation is a process of energy transfer that requires no interven-

ing medium. The dual nature of radiation, its particle (photon) and

wavelike properties have important biological consequences. All matter

radiates energy as individual photons (Kreith 1973) but for heat transfer

problems the wavelike description is more useful. This is because

energy at different wavelengths interaccs with matter it different ways

(but see Problem 2). Figure 3 shows the different wavelengths of electro-

magnetic spectrum.

Since radiation travels at the speed of light cL, the product of

the frequency f and the wavelength A is a constant:

10
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c
L

= fA. (1)

All objects, living and nonliving, radiate thermal energy. The amount and

:kind (wavelength in the electromagnetic spectrum) of energy depend on the

temperature and physical characteristics of the radiating body. Figure 4

shows the energy radiated by the sun and the earth as a function of

wavelength. It should be clear from the figure that the portion of the

electromagnetic spectrum radiating from the sun occurs at much shorter

wavelengths than that of the earth. In fact, the sun's peak radiation on a

wavelength plot is in the green part of the visible spectrum, while the

earth's radiation is completely in the infrared region.

Three physical laws are associated with Fig. 4. Planck's Law gives

the energy emitted, EA, as a function of the wavelength, A, if the

temperature of the radiating body is known:

where

EA = cIA-5 [exp(c2 /AT) - 1]-1 (2)

E
A

is the amount of energy emitted in the band A to A + dA (J m-1),

T is the blackbody temperature (K),

A is the wavelength (m),

cl is 2711c1,2,

c2 is hcL/Kb,

12
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and

8

h is Planck's constant = 6.63 x 10-34 (J s),

Kb is Boltzmann's constant = 1.38 x 10-23 (J K-1),

cL is the speed of light = 3.00 x 108 (m s-1).

It is obvious that no one has actually measured the surface temperature of

the sun. in this instance, the sun's temperature was deduced from its

electromagnetic spectrum. Second, from Planck's Law, it can be

demonstrated (Robinson 1966 or Roseman 1978) that the wavelength at the

maximum radiated energy is only a function of the temperature of the

radiating body.

2.897
x 10

-3
,

where

Xmax = wavelength of maximum radiation (m),

and

T = temperature (K).

(3)

Third, the Stefan-Boltzmann Law provides the even more remarkable result

that the total energy emitted, Qe, by a radiating body (the area under the

curve (Fig. 4)) is proportional to the fourth power of the surface

temperature Ts.

Qe = EG(273 + Te)4, (4)

1;
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and
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Q
e

is the radiant energy emitted from the surface (W m-2).

E is the emissivity (range zero to one),

a is the Stephan-Boltzmann constant (5.67 x 10-8 W m-2 K-4,

8.17 x 10-11 cal min-lcm-2K-4),

Ts is the surface temperature (°C).

Roseman (1978) gives a more complete discussion of these laws.

Kirchoff studied the emissivity and absoltivit:- of materials. He

showed that the energy absorbed at any specific wavelength X at constant

temperature is equal to the energy emitted at A. That is, if the

absorptivity of a surface a(A) represents the fraction of incident

radiation absorped at A and E(a) is the emissivity, the radiation emitted at X

divided by the radiation emitted from a blackbody, then a(X) = WO for each

wavelength. If E = 1 for all wavelengths, then the object is said to be a

blackbody. Although no system is a perfect blackbody, many are

approximately so. In the infrared region, 3 to 100 pm, most objects such

as vegetation, soil and water behave like blackbodies (E = 1). Table 1

gives the emissivities of some plants and animals.

This, however, is not true in the visible part of the spectrum. In

raral, any wavelength can be absorbed, reflected, or transmitted. This

is written:

a(A) + r(A) + t(A).i= 1

14

(5)
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Table 1. Long Wave Emissivities (from Monteith, J.L., 1973, p. 68.)

LEAVES ..g-

Species Average

Maize (7,ca mc:is) 94.4 ± 0.4
Tobacco (::::cot::ana tabacum) 97.2 ± 0.6
Snap bean (Ph.2seolus vulgaris) 93.8 t 0.8
Cotton (Gessynium hirsutur7 Deltapine) 96.4 ± 0.7
Sugar cane (Saccharum officinam) 99.5 ± 0.4
Poplar (PopuZus fremontii) 97.7 ± 0.4
Geranium (PeZ.cr_7:mium domesticu7) 99.2 ± 0.2
Cactus (Opuntia ra;"i,ic) 97.7 ± 0.2

ANIMALS

Species Dorsal Ventral Average

Red squirrel (Ta7icsgiurus
hu2sonicus)

95-98 97-100

Gray squirrel (Sciurus of,:roZinens::s) 99 99
Mole (Sca:orus aq4.2:::cu.74) 97 --
Meer mouse (1--r:,-.-2se4s sp.) -- 94
Grey wolf 99
Caribou 100
Snowshoe hare 99
Man (Homo say lens) 98

Table 2. Reflectivities of Biological Materials for Solar Radiation
(from Monteith, J.L., 1973, pp. 66-67.)

LEAVES
Reflection coefficients r (%) for Solar Radiation

Species Upper Lower Average

Maize (Ze: 29

Tobacco (:iic.:,tiana 29

Cucumber 31

Tomato (Lidaspersia:n eo.74:ertur7; 28

Birch (9e:u:4 30 33 32

Aspen (.P.7.7:41us 32 36 34

Oak (Quen7us 28 31 30

Elm (Thus 'ra) ;"1
24 31 28

15



Table 2. (Cont'd..)
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VEGETATION -- MAXIMUM GROUND COVER
r

Farm Crops Daily Mean Farm Crops Daily Mean

Grass
Sugar beet
Barley
Wheat
Beans
Maize
Tobacco
Cucumber
Tomato

24

26
23

26
24

18 - 22
19 - 24

26
23

Wheat
Pasture
Barley
Pineapple
Sorghum
Sugar cane
Cotton
Groundnuts

22
25
26
15

20

15

21

17

Natural Vegetation Daily Mean Natural Vegetation Daily Mean

Heather
Bracken
Gorse
Maquis, evergreen scrub

14

24

18
21

Natural pasture
Derived savanna
Guinea savanna

25
15

19

Forests and Orchards Daily Mean Forests and Orchards Daily Mean

Deciduous woodland
Coniferous woodland
Orange orchard
Aleppo pine

18
16

16
17

Eucalyptus
Tropical rainforest
Swamp forest

19

13

12

ANIMAL COATS

Mammals Dorsal Ventral Average

Red squirrel (Taniasciurus hudsonicus) 27 22 25
Gray Squirrel (.5ciurus ccrolinennis) 22 39 31
Field mouse ( ::crotus pennsyZvanicus) 11 17 14
Shrew (Sorex sp.) 19 26 23
Mole (Scatcpus aqu.n:icus) 19 19 19
Gray fox (Urocvon c::ner?o crgentus) 34
Zulu cattle 51
Red Sussex cattle 17
Aberdeen Angus cattle 11

Sheen .4eathered fleece 2G
Newly shorn fleece 42

Man (Hono sapiens) Eurasian 35
Negroid 18

Birds Wing Breast Average

Cardinal (Rich-:orxna: ccr2::n..7:is) 23 40
Bluebird 27 34
Tree swallow 24 57
Magpie 19 46
Canada goose 15 35
Mallard duck 24 36
Mourning dove 30 39
Starling (3turr zni7:-::-7)

Glaucous-winged gull (L:7-u3 :37i,,, -0..,-,a7)

34

52

16
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a(A) = absorptivity at wavelength A,

r(A) = reflectivity at wavelength A,

t(A) = transitivity at wavelength A,

and each term is between zero and one (see Siegel and Howell 1972 for a

more complete discussion). Table 2 gives some values for r averaged over

the entire spectrum for different ecological systems. Values of a, r, t

are also given by Porter (1967) for animals and Monteith (1973) for

plants and animals.

As an example of radiation flux, let us calculate the radiant energy

emitted by the cactus, Opuntia rufida.. To do this, we must specify the

emissivity C and the surface temperature Ts. In Table 1, C = .977 for

0. rufida and, if we take Ts = 10 °C, then:

Qe = .977 x 5.67 x 10-8 (10 + 273)4 = 355.5 W m-2. (6)

If we wish to know the total heat loss per second and (1 watt = 1 J s
-1

)

the plant, we must multiply our answer by the surface area of the cactus.

The calculation of absorbed radiation Oa, although straightforward

with some assumptions, is a lengthy task because several longwave and

shortwave components must be included. Gates and Stevenson (1979) have

devoted an entire module to this topic to which the interested reader

should refer for additional information.

17



13

Conduction

Conduction, G, describes the physical process of molecular thermal

`:energy flow within a solid, fluid or gas. In fluids and especially gases,

.motion of the medium usually makes the process of convection a more

important mechanism of heat transfer than conduction. Heat flows by

conduction when nearby molecules have more internal energy (higher temperature)

and thus a greater mean kinetic energy. Energy can be transferred by

molecular collisions (fluids) or by diffusion (solids) (Kreith 1973, pages

4-5).

In conduction, the rate of heat flow depends on the thermal

conductivity of the material, the area through which the heat flows and

the temperature gradient in the material. Equation (7) describes the

relation as:

where

and

dT
G = -kAcT;c-

G is conduction (W),

k is thermal conductivit (W m-I oc-I),

Ac is the area through which the heat is flowing (m2),

dT

dx is the thermal gradient (°C m-I).

(7)

The negative sign in equation (7) is to indicate that the direction of

heat flow is from regions of higher temperature to lower temperature

(opposite the temperature gradient). This is shown in Fig. 5.
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Fig. 5. Sketch illustrating sign convention
for conduction heat flow. From Kreith, F.

1973. P. 8.

r-

The thermal conductivity depends on the molecular structure of the

material. Some cooking pots have copper-coated bottoms because this

metal transfers heat better than other materials. Home insulation

materials reduce the flow of heat because they trap air which has a low

thermal conductivity. The hollow centers of the hair shafts of some

mammals reduces the conduction of heat along the fiber. The thermal

conductivity can be calculated by measuring the heat flow when the

temperature slope (Fig. 5) is one.

As an example of conduction, we will examine the heat flow between

the alligator, Alligator mississippiensis, and substratum. We assume that

the skin is she same temperature as the ground and that the animal is in

good thermal contact with the surface (there are no air pockets reducing

heat flow). The conduction exchange can now be calculated as follows:

The thermal conductivity of fat is 0.20 W m-1 °C-I while soil-rock range

of conductivity is between 0.556 and 3.25 W m-I 0C-I. Since the fat layer

of 0.7 cm has a lower conductivity, it controls the rate of heat flow.

Here we also assume that 0.5,m
2

of the alligator at Tb = 22 °C are in

contact with the ground at Tg = 30 °C. In steady state, the conductive

19
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heat flux is then a linear function of the potential, as given in equation

(7).

kA
.190.0078 0.5

G = T ) = (22-30) = -114 W,
x b g

-where

(8)

G is conduction (W, negative since energy is flowing from the ground

to the animal),

Tb is body temperature of the alligator (°C),

k is the thermal conductivity of fat (W m-1 oc-1),

T, :Ls ground temperature (°C),

and

Lx is thickness of layer (m).

Before proceeding to a discussion of convection, it is important to

talk about an alternative view of conduction. It is possible to rewrite

equation (8) as

G = K
g
(T

b
- T

g
).

( 9)

The rate of heat flow is then equal to a conductance Kg times a potential,

the temperature difference. The conductivity, area of contact and length

have all been subsumed into Kg. When working heat transfer problems, it

is also common to speak and think of resistances to heat transfer. A

resistance is simply the reciprocal of the conductance. If there is a

large resistance to heat flow, there is a low conductance. Monteith

(1973) and Campbell (1977) have adopted the resistance approach for

describing mass and momentum fluxes as well as heat transport... This

concept originated with Ohm's Law where the electrical current flow is

20
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equal to the potential or voltage drop divided by the resistance of the

material. Thus, the correspondence of a flux driven by a potential is

called Ohm's Law analogy. Kreith (1973, chapters 1 and 2) shol,'s how

radiation, convection and evaporation can also be thought of in these

terms. It should be remembered though that in general the Ohm's Law

analogy, due to the complications introduced by turbulent mass and

turbulent energy transfer, is an approximation (see Tennekes and

Lumley 1973).

Conduction is often ignored in the heat transfer of plants and

animals because one must know or make. assumptions about the temperatures,

boundary layer thickness, thermal conductivity, and contact resistance.

There are not many actual measurements reported in the ecological

literature but Mount (1968), Derby and Gates (1966), Gatesby (1977), and

Thockelson and Maxwell (1974) offer some interesting examples of the

importance of conduction.

Convection

"Convection" is the transfer of heat between solids and fluids (i.e.,

gases and liquids) or when fluids of different temperatures are in

contact. Conduction takes place with nearby particles on the molecular

level but the additional factor of the circulation of the fluid

distinguishes convection from conduction. When there is no motion in the

fluid except that caused by density gradients and by the resultant buoyant

forces, this process is called "free convection." If the fluid is moving

relative to the other fluid or solid, the process is called "forced

convection." If the flow is turbulent, besides the molecular processes,

21
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there will be increased heat transfer caused by the bulk transport of

fluid. Also, at certain fluid velocities, free and forced convection may
,r-

.both contribute to the convection term. Indeed convection is comprised of

several complex physical processes occurring simultaneously.

Water and air are the two fluids that commonly interest the

thermobiologist. Most aquatic organisms are at ambient water temperature;

hence, convective transfer is unimportant because there is no temperature

difference. Marine mammals, birds, a few large fish and turtles, however,

maintain body temperatures above water temperature, which requires thick

insulation (Bartholomew 1977, SchmidtNielsen 1975). This is because the

high specific heat (4.18 x iO3 J kg-1 oc-1%; and thermal conductivity (59.8

W m-2 oc-1) of water create a large heat loss. The extra heat transferred

due to the movement of the fluid has not been examined for many organisms

(but see Eskine and Spotila 1977 and Lueke et al. 1976). Although the

specific heat and thermal conductivity of air are much less than for

water, convection is still a significant mode of heat transfer for

terrestrial organisms.

As with conduction, convective heat flow can be thought of as a

potential (the difference in temperature between the surface of the object

and the surrounding fluid) times a conductance. The conductance is most

commonly written as the product of two terms as in equation (10):

where

C = he Ac (Ts T), (10)

C is the convective heat flux (W),

he is the convective heat transfer coefficient. (w m-2 oc-1),

22



and

18

Ac is the area at object in contact with the fluid (m2),

Ts is the surface temperature of the object (0C),

T is the fluid temperature (°C).

Usually, Ac, Ts and T can be evaluated. (One particular problem, however,

is the surface temperature of a furry object. Kowalski (1978) has shown

that in this case it is best to define the system boundary at a solid

surface where a temperature can be measured.) The heat transfer

coefficient, on the other hand, is often a difficult parameter to estimate

in the natural environment because of turbulence (Kowalski and

Mitchell 1976, and Noble 1975). Generally, it is established as follows:

where

and

hc = Nu k

D

hc is the heat transfer coefficient (W m-2 oc-1),

Nu is the Nusselt number,

k is the thermal conductivity of the fluid (W 7-1 °C),

D is the characteristic dimension of the system (m).

The heat transfer coefficient, hc, is a value which has been averaged over

the entire surface area of the system. The characteristll dimension D

must be defined for each different geometric shape one wishes to consider.

Commonly, one might use the diameter of a sphere or the widest point of a

leaf in the direction of the wind. The Nusselt modulus is a

23
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nondimensional number used to scale laboratory results to other wind

velocity and fluid properties. Kreith (1973, page 317) gives two physical

interpretations for the Nusselt number. It may be thought of 'as the

ratio of the temperature gradient in the fluid immediately in contact with

the surface to a reference temperature gradient (Ts T)/D" or the "ratio

D/x where x is the fluid thickness of a hypothetical layer which, if

completely stagnant, offers the same thermal resistance to the flow of

heat as the actual boundary layer."

In practice, another nondimensional number, the Reynolds number, Re,

which is the ratio of inertial (ov2) to viscous forces (pV/D), is introduced

to account for the scaling effects of fluid velocity, geometry, and fluid

properties (see Kreith 1973 or Cowan 1977 for a discussion of Re).

where

and

Re pVD

p is the fluid density (kg m-3),

V is the fluid velocity (m s-1),

D is the characteristic dimension (m),

p is the fluid viscosity (kg mI sI).*

(12)

For a particular geometry, a functional relationship between the Nusselt

number and the Reynolds number can then be calculated from laboratory

* Sometimes the kinematic viscosity v )2 sI) is used in the
Reynolds number where v = u /p .
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measurements (hc versus V). Usually, the result is expressed as:

Nu = a Reb (13)

'where a and b are determined by regression. The parameters will be

c-different for different shaped objects (Kreith 1973). then, using equation

(12), the Nu can be calculated which in turn will yield the convection

coefficient from equation (11). This procedure is the standard method

used in engineering. In ecological studies, where one is concerned about

the effects of wind speed and size and the geometry of the system is

constant, the convection coefficient is sometimes given without

specifically indicating the coefficient of equation (13) as in the

following example. This approach is more direct and is fine to use as

long as the student realizes what has been implied.

Tibbals et al. (1964), from earlier experimental work by Gates and

Benedict (1963), were able to use the following formula to evaluate

convective exchange for a leaf:

0.5

C = k
1 ( 1.7)

(T
s

T
a

)

where

(14)

C is the convective heat flux (W m-2, positive for heat flow frog the

leaf to the air),

lc' is 9.14 (J m-2 oc-1 s-1/2),

V is wind velocity (m s-1),

D is the characteristic dimension (widest point) of the leaf in the

direction of the wind (m),
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Ts is the surface temperature of the leaf (°C),

T
a

is the air temperature (°C).

!r-

After using this convection term C in the energy budget equation,

Tibbals et al. (1964, page 538) concluded for similar energy environments

"that . . . that the broad deciduous type leaf would be considerably

warmer than the conifers . . ." and " . . . that the demand on transpiration

is probably greatest per unit surface area for the broad-leaf plant than

the conifers." (Also see Gates 1977.)

The theory of convective transfer is more complex than presented

here. Although some additional material will be included in the problems,

the reader may wish to refer to Kreith (1973), Monteith (1973) or Campbell

(1977).

Evaporation

Evaporation is the process of water changing from a liquid to a gas.

For animals, water can be lost through respiration, through special

glands, or through any part of the skin. Water loss is usually a small

component of the heat balance for animals but may be large for animals with

moist skins. It usually increases quickly at higher temperatures. Figure 6

from Dawson and Templeton (1963), shows this effect for the collared

lizard, Crotaphytus collaris. In general, the water loss, E, is given by

equation (15). Again, this is in the form of a potential divided by a

resistance (an Ohm's Law analogy).

Co - Ca (15)

re
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temperature in collared lizards weighing 25-
35 g. Data represent minimal values at various
temperatures for animals studied. (From Dawson,

W.R., and J.R. Templeton. 1963. P. 231.)
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E is water loss (kg sI),

Co Ca is the water vapor concentration difference between the

surface (o) and the free atmosphere (a) (kg mI),

re is the resistance to water vapor loss (s

The water vapor concentration at the surface of the water loss site may be

saturated such as that of a leaf or a lung of a bird but it may be less

than saturated as in the skin of a lizard. The concentration in the air

is equal to the saturated concentration (at air temperature Ta) times the

relative humidity. The resistance to water loss in the skin of a lizard

will be controlled by the resistance to water movement in the skin and

the boundary layer resistance. In a leaf, the total resistance to water

loss is a combination of the stomatal resistance and the boundary layer

resistance. But the water loss resistance from the moist skin of a frog

was assumed to be equal to the boundary layer resistance only (Tracy 1976).

In general, the boundary layer resistance is a function of the diffusion

coefficient of water vapor in air and the boundary layer thickness. This

thickness in turn depends on the size of the object as well as the wind

speed.

To relate the water transport calculated in equation (15) to the

energy balance., the mass flux E must be multiplied by the latent heat of

evaporation L. L can be closely approximated as a function of

temperature.*

L(T) = 2.50 x 103 T, (16)

* L is also a function of pressure. See Zemansky and Van

Ness 1966.
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L(T) is the latent heat of evaporation (J kg-1),

T is the surface temperature at the site of evaporation (O0.

As an example of the energy flux, the water loss at Ta = 40 °C for C.

collaris is 0.8 mg of H2O g
1

hr
-1

(Fig. 7). Correcting the units to

kg s-1 for a 30 g lizard yields 6.67 x 10-9 kg s-1. Therefore, using

equation (16), the energy loss for the animal is 1.6 x 10-2 W. In this

example, we have not calculated E explicitly, mechanistically accounting

for wind speed or water vapor concentration of the environment, but animal

physiologists often report evaporation as a function of air or

body temperature only. These factors become more important when water

loss is a larger fraction of the total energy budget or when one is

concerned with the water balance of the organism (Welsh and Tracy 1977).

Later in the text, a functional relationship to include these factors is

given for water loss from a leaf. Generally, transpiration is a

significant energy loss for plants which has led Monteith (1973) to make

the distinction between "wet" and "dry" systems.

THERMAL PROPERTIES OF MATERIALS

In the above examples, we have mentioned several thermal properties

such as thermal capacity and specific heat. Now we wish to define them

more carefully.

Specific heat is defined as:

C = AO ,

AT M 29 (17)
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c is the specific heat (J kg -1 oc-1),

AQ is the heat flux (J),

AT is a 1° change temperature (°C),

N is a 1 kilogram system (kg).

We cannot measure the amount of heat a body can hold, so in a sense

the term specific heat is misleading, but it is commonly used. It is

simply the amount of heat which must be added per unit mass of material

for a 1° rise in temperature. What actually is changing is the internal

energy of the system. Table 3 (after Monteith 1973) shows values of

specific heat for different materials. See Stevenson (1979a) or Zemansky

and Van Ness (1966) for a more formal definition.

The heat capacity of the system can then be obtained by multiplying

the mass of the system by specific heat:

C = Mc. (18)

For instance, if we consider 0.12 kg of granite and the same weight

of peat soil as two systems (see Table 3), the heat capacity of each is

the specific heat c times the mass M or 96 J °C-1 for granite and 226 J

°C-1 the peat. To calculate the energy necessary to raise each system

10 °C, we can employ equation (18) in the form

AQ = AT M c.

The answer is found to 960 J for the granite and 2,200 J for the peat.
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Table 3. Thermal properties of natural materials.

(From Monteith 1973)

MATERIAL DENSITY SPECIFIC
HEAT

THERMAL
CONDUCTIVITY

THERMAL -r
CAPACITY

THERMAL
DIFFUSIVITY

P

kg m
3

c

-1 -1
3 kg °C

k

-1 -1
W m °C

= pc
v

3 -
J m °C

k
lc =

pc

m
2
s
-1

10
3

0
3 x 10

6 x 10
-6

Granite 2.60 0.8 4.61 2.08 2.22

Quartz 2.66 0.8 8.80 2.13 4.14

Clay mineral. 2.65 0.9 2.92 2.39 1.22

Ice 0.9 2.1 2.30 1.89 1.22

Old snow 0.5 2.1 0.29 1.05 0.28

New snow 0.1 2.1 0.08 0.21 0.38

Wet sand 1.6 1.3 1.68 2.08 0.81

Dry sand 1.4 0.8 0.17 1.12 0.15

Wet marsh
soil 0.9 3.4 0.84 3.06 0.27

Peat soil 0.3 1.8 0.06 0.54 0.11

Still water 1.0 4.18 0.63 4.18 0.15

Still air' 0.001 1.0 0.02 0.001 20.0

Organic
matter 1.30 1.92 0.25 1.00

Fur 0.98 0.33

0.98
Mean body 1.05

3.42

Fat 1.88
0.14-
0.20

Plant leaf

Wood i 0.6 1.3 0.15 .78 0.19

.
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An equally valid way of considering the heat capacity of a system is

to define the thermal capacity. It is the heat added per degree change

per unit volume and thus is equal to the specific heat times Ott density

of the material of the system (see Table 3).

where

and

AQ
c -
v LT V

cv is thermal capacity (J °C-1 -3),

AQ is the heat change in the system (3),

AT is change in temperature ( °C),

V .is unit volume (m3).

(19)

This is an especially useful concept if we wish to compare systems of

equal volume. Let us reconsider our previous example of granite and peat

except that now each system will have the same volume of 1.2 m3. Thus,

they are not the same systems as before. The volumetric heat capacity for

each is the product of the thermal capacity and the volume which for

granite turns out to be 2.5 x 106 J °C-I and for peat 0.65 x 106 J °C-1.

We have found an increase in the heat capacity for the second grahite

system and a decrease in the heat capacity in the second peat system.

This result is expected if we consider the densities of each material.

Thermal conductivity along with the notions of conductance and

thermal resistance have already been discussed and defined in the section

on conduction. The last parameter we wish to define is the thermal

32
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diffusivity K which is the ratio of the thermal conductivity K divided by

density p times the specific heat.

k J m-I °C-1 s-1
K

Pc -3kg M

= m2 S-1 .
(20)

The thermal diffusity is important in nonsteady state conduction problems

where thermal energy can be stored or transported as shown in the first

example of heat flow in the soil.

EXAMPLES OF THE HEAT ENERGY BUDGET

To illustrate the heat transfer principles and their biological

importance, we chose three systems: the soil, a leaf, and a lizard.

Again, the reader is asked to think of the ecological importance of the

system and how the thermal balance influences physiological processes as

the examples are presented.

Heat Flow in Soil

In soil, heat flow has great biological importance. Not only does

the energy balance control the soil temperature, but it greatly affects

the moisture content. Both factors are important for photosynthesis in

green plants. Soil temperature also influences nutrient uptake as we have

seen in our example at the beginning of the module. Fungi, bacteria,

insects, as well as many other invertebrates and vertebrates, commonly

spend part or all of their life cycles in or surrounded by the-soil. Soil

temperatures influence metabolic rates and may serve as a behaviOral cue

for daily and seasonal activity patterns.
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The simplest representation of heat flow in the soil is a conduction

process where the heat flux dQ per unit time dt is equal to the

conductivity k times the difference in temperature dT over a unit path

length dz.

dQ dT

dt
= k.

dz (21)

The minus sign is used to indicate that the potential gradient is in the

direction of decreasing temperature.

Another result can be derived by considering Fig. 7. The First Law

states that the change in internal energy (storage) is equal to the

inflow minus the outflow. The change in internal energy will be equal to

the mass (pdz) times the heat capacity (c), multiplied by the change in

temperature with time (AT).

dT dTcpa ki
dz = k {dz

dz

l

k 1 lidT) idTt
cp dz dz dz

aT k a2T

at cp az2

Equation 22 is a form of the diffusion equation and -t-- is called the

(22)

thermal diffusivity. This equation can be solved analytically if simple

enough boundary conditions are assumed and the thermal diffusivity

remains constant. In general, the diffusivity is a function of the water

content of the soil and the soil temperature (here numerical methods must

be used). We can, however, get a feeling for the heat transfer profile

by noting the general boundary conditions. We know that at the soil

surface under steady state conditions the temperature will cycle daily

while at some depth zo below the surface the temperature will not change.

34.



Outflow k (dT /dz

Figure 7. Schematic view of a unit of soil,
showing heat inflow from above
and heat outflow below, leading
to derivation of Eq. 22. (From
Lowry, W.P. 1969. P. 51)
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Figures 8 and 9 from Lowry (1969) give different representations of how

the soil might change with time and depth. Simpson (1977), Carslaw and

Jaeger (1959), and Van Wijk (1966) present a more detailed discpssion of

soil heat flow.

A Leaf

Our second example is the energy balance of a leaf. Gates (1968)

chose to model the heat balance of a leaf because it has a distinct

physical geometry and because it is the unit of photosynthesis. The

governing heat flux equation for the steady state condition was given in

the module on the First Law of Thermodynamics and is repeated here:

Qa = Oe + C + LE, (23)

where

Qa is the radiant energy absorbed by the leaf (W m-2),

Qe is the energy emitted by the leaf (V m2),

C is the convective flux (W m-2),

and

LE is the evaporative flux (W m-2).

With empirical measurements and some assumptions (see Gates 1977),

equation (23) is expanded as:

where

0.5

Q
a

= co(T 273)4 + k
TS

(T T
a

)

C
o
(T ) r.h. C

a
(T
a

)

+ L(T ) k (Do.3 wc.2o)/vo.50
2`

Q is the Stefan-Boltzmanmconstant (5.67 x 10-8 W m-2 K-4),

e is the emissivity of the leaf,

(24)
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Figure 8. Generalized soil-air temperature
profiles (tautochrones) near the
soil surface, for four-hour inter-
vals during a diurnal period.
(From Lowry, W.P. 1969. P.37.)

T4,40
T +30

T +2

00 12

Hour

Figure 9. Generalized diurnal patterns of
isotherms near the soil surface
on coordinates of time and
distance. (From Lowry, W.P. 1969.

P. 37.)
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T
2,
is the leaf temperature (°C),

is the wind speed (m s-l),

kl is an experimentally determined coefficient (9.14 J m-2

s-0.5 oc-1),

k2 is an experimentally determined coefficient (183 s-°*5 m-1),

Ta is the air temperature (°C),

D is the leaf dimension in the direction of the wind (m),

r.h. is the relative humidity,

W is the leaf dimension transverse to the wind (m),

C
o
(T

A
) is the concentration of water vapor saturation at leaf temperature

T (kg 11!
1),

C
a
(T

a
) is the concentration of water vapor in free air saturated at air

temperature T
a

(kg m ),

and

r is the internal diffusion resistance of the leaf (s m-1).

Inspection of equation (24) shows that the energy balance of the

leaf is very dependent on leaf temperature which in turn affects

convection and transpiration. To analyze this multivariate problem,

Gates graphed three variables while holding the rest constant. Figures

10 and 11 illustrate thermodynamic conditions that would be common in

tropical habitats at midday sunny (Qa = 1.2 cal cm-2 min) and cloudy

(Qa = v,8 cal cm-2 min) radiation levels. Note the differences in

transpiration rates and leaf temperatures as a function of leaf

resistance. Gates (1968) also considered the effects of leaf size.

Figure 12'clearly shows that small leaves, by reducing leaf temperature

and transpiration, would be advantageous in desert regions.
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A Lizard

As a final example, we will review the work of Bartlett aktd Gates

(1967) who computed the heat energy budget for the Western fence lizard,

,Sceloporus occidentalis, on a tree trunk. They hypothesized that S.

occidentalis oriented itself on the tree trunk so as to maintain its body

temperature relatively high and constant. The daily temperature

variation of the tree surfaces supported their idea (Fig. 13). The heat

energy equation for equilibrium is

Qa + M Qe - LE C - G = 0 (25)

where

Qa is energy absorbed (W m-2),

M is metabolism (W m-2),

Qe is radiation emitted (W m-2),

LE is evaporation (W m-2),

C is convection (W m-2),

and

G is conduction (W m-2).

Equation (25) may be rewritte.i:

Qa +M-EcrAe (273 + Te)4 - LE

d

-11cAc(Is-Ta)- "--c dT m0x

where

is emissivity to longwave radiation,

42
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Figure 13. Tree surface temperature in °C
on Chew's Ridge at 10:00, 1.:00,
and 17:00 Pacific Standard Time
June 21 as a function of direction
from North.
(From Bartlett, P. N. and D. M.
Gates. 1967. P. 320.)
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a is Stefan-Boltzmann constant (5.67 x 10
-8

W m
-2

K
-4

),

Ae is the percent of the total surface area of the animal not in

contact with substratum, -4--

Ts is surface temperature of the lizard (°C),

he is convection coefficient (W m-2 oc-1),

Ta is air temperature (°C),

k is thermal conductivity of substratum (W m-1 oc-1),

Ac is the percent area of the animal total surface area in contact

with the substratum,

dT
(7.1)- is temperature gradient with the substrate (°C m-

The terms of equation (26) were either experimentally determined or

taken from the literature. It was then solved for a variety of

sl-Alations to obtain a range ot values for the animal's energy balance:

1. A maximum heat gain: If the lizard's surface temperature Ts

equaled 29.3 °C and the lizard was in close contact with the tree.

2. A minimum heat gain: If Ts = 39.9 °C and the lizard was not in

contact with the tree.

3. Maximum heat loss of Ts= 38.9 °C, wind speed = 2.23 m s-1 (5

mph) and the animal was oriented at 90° to the direction of the wind.

4. Minimum heat loss if Ts = 29.3 °C, and wind speed was 0.1 m s-1.

5. Intermediate heat loss if Ts = 34.1 °C and wind speed = 0.45 m

s-1.

Figure 14 gives sample results.

Finally, they calculated the energy losses and gains every hour at

45° increments around the tree. Using the criterion that the energy

losses must fall between the energy gains (Fig. 14), they could predict
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the position of the lizard on the tree trunk as a function of time of

day. The predicted and observed positions of the lizards are compared in

Fig. 15. -4'

This module has attempted to develop the aspects of heat transfer

that are important to biology. Emphasis has been placed on the physical

processes, radiation, evaporation, conduction and convection, that

influence the physiological, behavioral and ecological activities of all

organisms. The discussion in conjunction with the modules on the First

Law of Thermodynamics presents the basic physical laws that are needed to

describe the heat energy balance of ecological systems.
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PROBLEMS

la. To measure the oxygen consumption of resting homeotherms as a

function of the thermal environment, animals are commonly placed in an

.environmental chamber where the air temperature can be changed and

rmonitor,A. The results of the experiment are given as a plot of 02

consumption versus air temperature. Imagine that for some reason the

wall temperature is not equal to the air temperature. Plot the radiation

emitted by the wall per unit surface area, Qew, as a function of wall

temperature using Stefan-Boltzmann's Law (assume emissivity equals 0.96).

lb. If the emissivity of an environmental chamber with plastic

walls is O. 6 for longwave radiation what is its absorptivity to longwave

radiation? Imagine that the air is much cooler than the animal's

surface. The radiation leaving the animal, incident on the walls, could

heat the walls above the air temperature and increase the radiation

incidence on the animal. Name two ways to avoid this problem. A chamber

with metal walls will have a small emissivity ('\.15) to longwave

radiation. What will be its reflectivity? What will happen to the

radiation leaving the animal in this case? How cin this effect be

minimized?

2a. It is also possible to represent Planck's Law as a function of

frequency f rather than wavelength A:

271 11 3 hf
E = f exp -1

-1
.

L
f C2 KbT

Equation (1) of the text gives the relationship between A and f. Show how

Ef and EA are related. What is the difference in dimensions between Ef and

EA? The concept of wave number is often introduced to plot Ef and FA of the
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same graph. Wave number n = X. How are f and n related? Plot E
X

and

Ef for T = 280 K as a function of X. Repeat for T = 6,000 K but show both

the X and n scales. How does the relationship of bandwidth/ wive number

and bandwidth/wavelength change over the spectrum?

2b. Planck also found that the energy in a photon, e, is

proportional to its frequency (e = hf). What does this imply for a Ex

versus Ef representation? At what wavelength does the sun radiate the

mos (4y? Assume its surface temperature is 6,000 K. How does this

value compare with that in Fig. 4?

3a. Using equation (8), plot the heat of vaporization as a function

of temperature. Schmidt-Nielsen (1975, page 313) says that 580 cal g-1

is a commonly used value in physiology. Is this a good approximation?

Evaluate the error over the range 0 to 40 °C.

b. Schmidt-Nielsen (1975, page 37) gives the lung volume for

mammals as a function of weight as

V = 0.0567 Ml02

V is lung volume (liters) and M is body mass (kg).

If respiration rate (breaths min-1) is a function of air temperature

(for a moose (Belovsky 1978)),

Br = 7.72 exp (.07 Ta),

calculate the respiration loss in watts as a function of air temperature

(Ta = -20 to 40 °C). Assume M = 358 kg, that the exhaled air is at air

temperature, the relative humidity is 50 percent and L is constant at

2.43 x 106 J kg-1. Repeat the calculation for the exhaled air at

Ta + Tb
.

2
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Hint: The energy lost is equal to the net mass flow (the mass of

water exhaled minus the mass of water inhaled per unit time multiplied by

the latent heat of water). Convert the volume exchange to a mess

exchange using the fact that concentration (mass/volume) of water is the

product of the molecular weight, the vapor pressure of water at that

temperature and the relative humidity divided by the product of the gas

constant and the absolute temperature of the sample.

4. The rate of heat transfer by conduction depends on the

potential (temperature difference), the area of contact and the

conductivity of the material. Estimate the heat transfer between an

animal and the ground for all combinations.

Surface temperature = 20 °C

Ground temperatures = 2, 14, 27 °C

Area of contact = 0.054 m2

Thermal conductivities = 0.02, 0.08, 0.17 W m-1 °C-1

Thickness of the material layer limiting heat flow = 0.005 m

5a. In the diagram, heat flows through two materials from the left

boundary (temperature T1) to the right boundary (temperature T2). Assure

steady state conditions.
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H L1
L
2

k1

q1

k
2

q2

T
2

How does the temperature drop at the boundary depend on thermal

kl LI

conductivity and the thickness of the material? Let 7 = a and
1-2

= b;

TB T2 k2

find TB. Let
a
and find TB. Plot If a = 1.2, b = 0.2, T1

T1 T2'

= 40 °C and T2= 10 °C, in which material is the temperature gradient

larger? Which material has the larger temperature drop? What is TB?

b. In the conduction section of the text the heat flow between an

alligator and the substrate was calculated. It was assumed that the heat

flow into the rock was not important. Discuss this assumption with

regard to part "a" of this problem.

c. Imagine that the alligator's skin temperature is initially

equal to the body temperature. How will the temperature profile change

in the soil and in the animal as the heat exchange approaches a constant

value?

6. Kreith (1973) gives the following relationship for Nu and Re of

cylinders:

Nu = a Reb
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Re a b

0.4-4 0.891 0.330

4-40 0.821 0.385

40-4,000 0.615 0.466

4,000-40,000 0.174 0.618

40,000-400,000 0.0239 0.805

Assume that wind velocity is 2 m s-1 and 0.1 m s-1, the diameter is .46 m

and .002 m. Compute he for the four combinations of diameter and wind

velocity. Take v = 1.42 x 10-5 m2 s-1 and k = 2.50 x 10-2 W m-1 K-1 at an

air temperature of 10 °C.

7a. Calculate the heat transfer coefficient for a flat plate using

Nu = 0.60 Re05 (Monteith 1973, page 224; Kreith 1973, page 341). Let

air temperature be 20 °C, so V = 1.51 x 10-5 m2 s-1 and k = 2.53 x 10-2 W

m-1 K. How does this compare with the convection coefficient for the

leaf? This is accurate for laminar flow Re < 2 x 104.

b. Show the region Re < 2 x 104 on a graph of wind velocity V

versus the characteristic length D. When Re < 2 x 104, Monteith suggests

0.032 ReM. How likely is this to occur naturally? Would a leaf be

rigid in these wind speeds?

8. In the text, we discussed the physical process of free

convection. To determine the importance of free convection, one must

compute the ratio of the Grashof number to the square of the Reynolds

number. If the ratio is approximately 1, then free convection.cannot be

ignored. The Grashof number is
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g = gravitational acceleration (9.8 m s-2),

a = coefficient of thermal expansion for fluid (a = 1/273 for air),

Ts = surface temperature (°C),

T = fluid temperature (°C)

v = kinematic viscosity (m2 s-1).

Gr
Plot on a graph of V versus D. Let Ts - T equal 10, 20 and 30.

Reg

Below the line Gr = Reg, free convection loss cannot be ignored. Is free

convection important forvleaves in the natural environment?

9a. The energy balance for fruits is important in both cultivated

and wild plants because it affects when and at what rate the crop ripens.

Grapes for instance must be picked at just the right time to insure the

sugar content for winemaking. McIntosh apples.need cold nights and

warm days to be of the best quality. When weather conditions are

unfavorable, fruit can become overripe or rotten before it is harvested.

Wild plant fruits are an energy investment by the plant to attract seed

dispersers. This is especially true of birds and bats in the tropics.

The color of the fruit is often an important signal to a potential

disperser while the size and spacing of the fruits will influence the

animal's harvesting rates. These same characteristics are important to

the fruit's thermal balance.

An empirical approach based on the "heat unit" or "growing degree

day" concept has been developed to predict the harvest times. When the

fruits have been exposed to x degree days the theory says they will he

ready to pick. Degree days are computed as follows:
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where DD is degree days, Tamax is the maximum air temperature during the

day, Tamin is the minimum air temperature for the day and Tt ikra threshold

temperature specific for each species and which can be thought of as the

temperature below which development is stopped. (The summation is over

only positive values of the term). From the data below calculate the ri-

pening degree days if Tt is 16 °C.

Day 1 2 3 4 5 6 7 8 9 10

Tamax°C 20 25 21 21 18 20 25 27 26 23

Tamin°C 16 18 14 13 10 12 15 18 18 16

What problems are there with this approach?

b. A more mechanistic viewpoint should allow one to calculate the

temperature of the fruit. As an example let us consider a spherical

model 1, 4 and 10 cm in diameter. What is the heat energy balance

for the fruit. Which terms are small and can be ignored? What terms are

you unsure about? As a first approximation, let us start with the

following model:

Qa = Qe C,

where

and

Qa is absorbed radiation (W m-2)

Qe is reradiation (W m-2),

C is convection (W m-2).

Under steady state conditions the temperature of the fruit core, Tf,

will equal the temperature of the surface. Therefore, Qe = E G Tf4 and

C = he (Tf 7 Ta). For forced convection about a sphere without the

increased turbulence of the outdoor environment (Nobel 1975; Kowalski and
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Mitchell 1976; Monteith (1973, page 224) give two formulae for the

relationship between the Nusselt and the Reynolds number.

Range of Re Nu

0-300 2 + 0.54 Re°5

50 1 x 105 0.34 Re°*6

Calculate Nu by both formulae for Re = 50, 100 and 300. If D = 1 cm,

what is the minimum wind speed for which the second relationship is

valid? Which formula yields a lower heat transfer coefficient? What will

the effect on the energy balance of the fruit be? Find he as a function

of D (0.01, 0.04 and 0.1 m) and V (0.1, 1.0 and 10.0 m s-1) if Nu = 0.34

Re06 . Assume v = 1.42 x 10-5 m2 s-1 for the entire problem.

For a sphere: Qa = as [AO + A2s + A3r +(S+s)] + azAz[Ra + rg]

where

a
s = the absorptivity to shortwave radiation (assume .7),

Al = the percent of the total surface hit by direct beam radiation

weighted by the angle of incidence (equals irr
2
/47r

2
= 1/4)

S = direct beam solar radiation (W m-2),

A2 = As = Ai = the percent of the total surface hit by the

corresponding radiation sources (assume 0.5),

s = diffuse shortwave radiation (assume = 0.1 of total shortwave

radiation R
P'

W m-2)

r = reflectivity of the ground (assume 0.15),

ai = absorptivity to longwave radiation (assume 1.0),

Ra = longwave radiation from the atmosphere (W m-2),
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Rg = longwave radiation from the ground (W m-2).

From Morhardt and Gates (1974, page 20, Fig. 2c), I have taken Rp,

-Ra and Rg for a sunny day and converted the units to W m-2 as tabulated

-below:

TABLE FOR PROBLEM 9b

Hour of
Rp R

a
T
a

the Day (W m2) (W m2) (W m-2) (°C)

7 35 223 335 7.5

8 593 223 348 10.0

9 837 230 369 12.0

10 1012 237 419 15.0

II 1116 244 461 19.0

12 1186 251 502 24.0

13 1116 258 481 27.0

14 1012 251 461 25.0

15 837 244 419 22.0

16 593 237 391 16.0

17 35 237 363 12.5

18 0 230 349 10.0

Calculate Qa values for each hour of the day. What part of this is

shortwave radiation?

Assuming that the wind speed is 1.0 m/s and that the diameter of the

fruit is 0.04 m and using the convection coefficient you have derived,

calculate the fruit's equilibrium temperature for each hour of the day.

Using Q
a

and T
a

values for 7 and 12 o'clock calculate the equilibrium

fruit temperature for all coAbinations of V = 0.1, 1.0 and 10.0 m/s and D

= 0.01, 0.04, 0.10 m. Size and wind speed affect the fruit temperature

in opposite ways at the two times. Why is this? What are the problems

with this approach?
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10. Discuss the following group of papers concerning heat transfer

in bic,logy:

%trunk, T. H. 1971. Heat loss from a Newt,lian animal. J. Theoret.

Biol. 33:35-61.

Kleiber, M. 1972. A new Newton's Law of cooling? Science

178:1283-1285.

Tracy, C. R. 1972. Newton's Law: its applicability for expressing heat

losses from homeotherms. BioScience 22:656-659.

Technical Comments: Perspectives of linear heat transfer: T. H. Strunk,

C. R. Tracy, M. Kleiber. Science 181:184-186.

Linearized heat transfer relati' s in biology. G. S. Bakken and D. M.

Gates; T. H. Strunk; M. Keiber. Science 183:976-978.

Bakken, G. S., and D. M. Gates. 1974. Notes on "Heat loss from a

Newtonian animal," J. Theoret. 'Biol. 45:283-292.

56



1.

600

500

300
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PROBLEM SOLUTIONS

200
I f f I I I t I

-20 -10 0 10 20 30 40 50 60

TweC)

Q
a

-20 223.6

-10 261.0

0 303.3

10 350.1

20 402.2

30 460.0

40 523.8

50 593.6

la. Metabolic heat will increase the wall temperature. The smaller

the chamber, the greater this effect will be. The influ.nce will change

as the square of the distanc-2.

b. The absorptivity is 0.96. Two ways to minimize wall heating

are to make the chamber large relative to the animal or immerse the

chamber in water. If the emissivity for the metal walled chamber is 0.15

absorptivity will be 0.15. Because the walls will not transmit longwave

radiation, 85% will be reflected back to th2 animal and the other sides
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of the chamber, again making the chamber feel warmer to the animal than

the air or wall temperatures would indicate. Changing the inside surface

t characteristics of the chamber cr increasing the chamber size relative to

the animal will reduce the importance of reflected radiation. (See

Porter 1969 and Morhardt and Gates 1974 for discussion.)

2a. Ef = A-2 EA /cL. The dimensions of Ef are M L-2 and of EA are M

T-I L-3. They differ by a factor of L-I T-I. If A f = cL and n = A-I

then n = f/cL. (For plots see data below and the following figures.)

Because wavelength is inversely proportional to wave number, equal

bandwidths on a wavelength plot will cause unequal bandwidths on a wave

Table for Problem 2.

T

(K)
A n f A

Ef

(m x 10-6) (m I x 106) (s-I x 101`) (J m-3s-1) (J m-2)

280 4.0 0.250 0.750 0.10 x 107 0.05 3: 1011:
5.0 0.200 0.600 0.41 0.35
6.0 0.167 0.500 0.92 1.10
7.0 0.143 0.429 1.45 2.37
8.0 0.125 0.375 1.86 3.98
9.0 0.111 0.333 2.11 5.71

10.0 0.100 0.300 2.21 7.38
11.0 0.091 0.273 2.20 8.87
12.0 0.083 0.250 2.11 10.31
13.0 0.077 0.231 1.98 11.14
15.0 0.067 0.200 1.66. 12.45
17.0 0.659 0.176 1.35 13.00
20.0 0.050 0.150 0.97 12.95
30.0 0.033 0.100 0.34 10.17
40.0 0.025 0.0;5 0.14. 7.46
60.0 0.017 0.05; 0.04 4.25

100.0 0.010 0.030 1.85
150.0 0.007 0.020 0.90

6000 0.15 6.66 20.00 0.06 x 1013 x 10-3
0.20 5.00 15.00 0.73 0.10
0.25 4.00 12.00 2.63 0.55
0.30 3.33 10.00 5.22 1.57
0.35 2.86 8.57 7.57 3.09
0.40 2.50 7.50 9.15 4.88
0.45 2.22 6.67 9.91 6.69
0.50 2.00 6.00 10.00 8.33
0.55 1.82 5.46 9.65 9.73
0.60 1.67 5.00 c.03 10.83
0.65 1.54 4.62 6.28 11.66
0.70 1.43 4.29 7.50 12.24
0.80 1.25 3.75 E.01 12.81
0.90 1.11 3.33 4.74 12.82
1.00 1.00 3.00 3.75 12.48
1.25 .80 2.40 2.1' 11.00
1.50 .67 2.00 1.25 9.37

2.00 .50 1.50 .51 6.73
3.00 .33 1.00 .13 3.77
5.00 ,20 .60 .02 1.62

10.00 .10 .30
&IQ

.46
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Figure ,for Problem 2.
Emitted radiation as a function of temperature

(T 280 K).
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Figure for Problem 2s. Emitted radiation as a function of

temperature (T 6000 K). 1 11
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number plot. For equal wavelength bandwidths larger wave numbers imply

larger bandwidths.

b. A frequency or wave number plot has the property that equal

areas represent equal amounts of energy which is not true of a wavelength

plot. The maximum energy is at X = 0.85 x 10-6 m which is in the near

infrared portion of the spectrum, while Fig. 4 shows Amax = 0.48 x 10-6 m.

3a. Equation (16) is

La) - 2.50 x 106 - 2.38 x 103T

2.5

2.4

0 3^

T (°C)

580 cal g-1 = 2.43 x 106 J kg-1.

2.43

Body temperature for most homeotherms is above 36 °C. Expelled air will

be below body temperature so this seems like a good estimate. If the air

was really at 0 °C, the error would be:

2.50 - 2.43

2.43
= 2.9 percent.

At 45 °C, the error would be:

2.43 - 2.40

2.43 = 1.2 percent.
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b. For the moose

1.02 . 22.
liters

VL = 0.0567 (358) 83
breath

'fliters of air per min are:

Rv = 176.3 exp (.07 Ta),

Rv = 2.94 exp (.07 Ta) m3 x 10-3s-1.

Assume that the air is saturated at Tb = 38 0C. We need to calculate the

kg of water vapor in a liter of air (Ce, kg m-3) exhaled at (Tb + Ta)/2
me(T)

Ce =
RT

where

and

m is molecular weight of water (18 g mo1-1),

R is the gas constant (8.13 J mo1-11(-1),
Tb - Ta

T is temperature (k at ),

e(T) is saturated vapor pressure of water at temperature (T) (mbars).

C
e

C
e

=

18 g mol
-1

e
s

(T)

8.31 kg m
2
s
-2
mol

-1
K
-1

T

.217 e (T
a
+ T

b
)/2

(T
b

+ T
a
)/2

The concentration of water vapor inhaled is

C.
1

.217 e(Ta)

T
a

.h. 62
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LE = 2.43 J kg-1 (Ce Ci) Rv

= 2.43 r.h.

(

.217e[(Ta + Tb)/2] .217e(Ta)r.h.
x 2.94 exp (.07 T

a
).

(T + T
a
)/2 T

a

Table of evaporative water loss as a function of expelled temperature.

°c M3 X 10-3 S-1

T
a

-20

-10

0

10

20

30

40

T +T
ba

C
e

.0090

.0120

.0164

.0218

.0290

.0375

.0485

C'
e

.001

.0024

.0048

.0096

.0172

.0302

.0510

C
i

.0005

.0012

.0024

.0018

.0086

.0151

.0255

(C -C )
e i

(C -C ir
v

R

.73

1.45

2.94

5.92

11.92

24.01

48.34

LE
__

15

38

100

244

591

1307

3172

LE'

0.90

4.2

17.1

69.1

249

881

2996

2

9

14

19

24

29

34

39

.0085

.0108

.0140

.0170

.0204

.0224

.0270

.0005

.0012

.0024

.0048

.0086

.0151

.0255

4. The conduction transfer during steady state can be calculated

according to the following formula:

G
Px

kA
c
(T

b
- T

g
)

Table of G values (W)

T
g

1 o -1(°C)\k(14 m C
N
) .02 .08 .17

2 3.89

14 1.30

27 -1.51

15.55

5.18

-6.05

33.05

11.02

-12.85
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5. By definition

k
1

q
1

=
L
1

(T
1
-T

B
) and

.76

k
2

(T
B
-T

2
).

q2 172-

From the First Law of Thermodynamics, we know that

1 2
ql 142.

Therefore, (Ti-TB) = (TB-T2).
1

Solving for TB, we have

1 L
1

+T2
L
2

=TB
L
1

L
2

L2k1 L
1
k
2TB = T

B
11L2k1

+ Lik2
+ T

41,
2
k
1
+ L

1
k
2

let k
1
= ak

2
and L

1
= bL

2
then

TB = T1
L2 ak

L2k2
T =
B L

2
k
2

L2ak2

2
+ bL

2
k
2

T1 a

bl

Now let a = x

I2 L
2
ak

2
+ bL

2
k
2

+ T
bL

2
k
2

[T, b
1+

a + b a+b
(T

1
a + T

2
b).

TB = x+1
(T
1
x + T 2) .

Since a > 1, k
1

> k
2
so material 1 has the steeper temperature gradient.

a 1.2
Because x = - 6.0, the total temperature drop is greater inb .2

material 2. T
B

= 35.7 °C.
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b. A more realistic description of the heat transfer would allow

for a slight temperature drop ih the soil. Then, in part a, T1 = Tg and

T2 = Tb.

c. The skin will warm from its initial temperature of 22 °C

towards ground temperature. Because heat is leaving the soil there will

be a thin layer that cools down from 30 °C. Eventually an equilibrium

will be reached and the temperature profile will be constant.

6.

Nu Nu = a.RebV
V

D 0.1 2.0
0.1 2.0

.46 3239 64789 .46 26.59 178.51

1002 14 282 .002 2.27 8.52

he - D

Nu k

D

.46

.0n2

7.

0.1

1.45

28.38

2.0

9.70

106.5

Nu = 0.60 Re0.5 Nu k
c D

h = 0 60 [V Di° .5 0.60
0.5c D V x

(v)0.5 D

= 3.9+V1 0.5h

65.



60

This is approximately 2.3 times the value of 9.14 J m2 °C-1 s-1/2

that Gates uses. Most wind speeds in natural environments are less than

3 m 1 and most leaves are less than 0.1 m along their largess

dimension, thus, Re < 20,000. Leaves usually will not flutter-at wind

speeds less than 3 m s-1. (See figure for Problem 7 on following page.)

See Grace (1977) for additional information.

Figure for Problem 7

Re 22:42

R , 200D0

.1 .3

Nametrf of !cal in ne:ers

8. Reg = Gr

Reg = Gr

D
2
V
2 ag D

3
(T

s
T)

v
2

v
2

V
2
= ag D(T

s
T)

Figure for Problem 8

Curves for v1110 the Reynolds number squared equals the Grasnof
number.

V= .1895JF:71)D
6 6
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Velocity (m 5-1) as a function of Ts - T and D

Ts - T (°C)

D(m) 5 10 20

.3 .232 .328 .568

.2 .189 .268 .464

.1 .134 .189 .328

.05 .095 .134 .232

.01 .042 .060 .104

From Figures 10, 11, and 12 in the text it is clear that leaf temperature

is usually not more than 10 °C above air temperature (although this is a

function of leaf size in Fig. 12). Leaf size is usually less than .05 m

and wind speed is below 3 m s-1. There still remains a set of conditions

where free convection may be important. For additional information see

Tibbals et al. (1964) and Grace (1977).

9a. The degree dad's DD = 30. This approach assumes: 1) that the

high and low air temperatures will represent the average thermal

conditions that he fruit experiences; 2) that development is a linear

function of the high and low average; and 3) that there is no problem

with the fruit overheating. There are undoubtedly other problems also.

b. For Re = 50 and D = 0.01 m, 1.42 x 10-5

DV . Re v 50 x 1.42 x 10-5
Re = So V - .710 mks

0.01

A comparison of the Nusselt numbers at the same Reynolds number (in

the range 50-300) shows that the Nusselt number computed by the first

formula is larger. Since the,heat transfer coefficient is proportional
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to the Nusselt number, the choice of the second formula will give a lower

convection coefficient. Choosing the second formula will make the

fruit's temperature depart from air temperature to a greater egtent than
r.

'the first formula.

0.34 (DV )
0.6

k

Re =
DV

so Nu = 0 .34
(DV)0.6

and he =
D

Therefore, if

k= 0.025 W m
1
K
-1

, he = 6.8 V°
6

D
-0.4.

h
c

for a sphere

V(m/s)

D(m) 0.1 1.0 10.0

0.01 10.8 42.9 170.8

0.04 6.2 24.6 98.1

0.1 4.3 17.1 68.0

Qa values are in the table below. Because as, Al, A2, A3, r and S/s

are assumed constant, the absorbed shortwave radiation is equal to 0.245

Rp.

Ti=e (hours) 7 8 9 10 11 12 13 14 15 16 27 IS

Oa (6.T.-) 288 431 505 576 626 667 642 604 536 459 30S 29?

Ta ( °C) 7.5 10.0 12.0 15.0 19.0 24.0 27 25 22 16 12.5 10

T
f

( °C) 6.0 12.9 17.0 21.9 26.8 32.1 33.7 30.9 26.2 18.8 10.5 8.1

For 7 o'clock

Tf values (°C)

V(m/s)

D (m) 0.1 1.0 10.0

0.01 4.6 6.6 7.2

0.04 3.3 6.0 7.1

0.1 2.4 5.4 6.9
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Fo.: 2 o'clock

Tf values (°C)

1
V(m/s)

D (m) 0.1 1.0 10.0

0.01 38.7 29.1 25.4

0.04 43.9 32.1 26.4

U.1 47.3 34.8 27.4

The Ti values given can he more accurately computed for the

conditions given but the estimates of Rp, Ra, R8 and Ta do not warrant

it. If she absorbed radiation is below that found in a blackbody cavity

at air temperature Ta, then decreasing the convection coefficient

(decrease V or increase D) will increase the difference between Ta and Tf

making the fruit coder. Conversely if Qa is greater than a blackbody

level increasing the convection coefficient will bring the fruit closer

to air temperature. The problems with this approach are several.

Usually the radiation fluxes are much more complex than we have

considered because of surrounding vegetation or other fruit. Clumping of

fruits will also decrease the convection coefficient. The microclimate

on opposite sides of a plant is often different and difficult to specify

accurately in small places.

The fruits grow and change color during the season. Smart and

Sinclair (1976) have investigated some of these problems as well as the

temperature differences within one fruit and nonsteady state conditions.

10. No solution provided.
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APPENDIX I. Symbols, Units and Dimensions

iymbol Quantity Unit Dimensic

A
c

Area in contact with substrate m
2

L
2

A
e

Area of emittance m
2

L
2

A
i

Percent of total surface area

exposed to radiation source i

a Constant

a(A) Absorptivity at wavelength A

a Average absorptivity to longwave

radiation

a
s

Average absorptivity to shortwave

radiation

MEW,

MIM.M

M

Br Breathing rate min
-1

T
-1

b Constant

2
C Convection W m

-2
H L

-
T
-

C Heat capacity J °C
-1

H 0
-1

c Specific heat J kg-1 °C-1 H M
1

0
-

C
a

Water vapor concentration of the kg m
-1

, "OH,
1

air

C
e

Water vapor concentration of kg m
-1

M L
1

exhaled air



APPENDIX I. Symbols, Units and Dimensions (continued)

iymbol Quanti Unit Dimension

Speed of light 3 x 10
8

S
1

L T
-1

c
L

Co Water vapor concentration at the kg m
1

M L
1

v

ci

c
2

D

DD

E

E
f

E

e

e

f

g

Gr

surface of the organism

Volumetric specific heat

2
Constant = 27hc

L

-
Constant = her, Kb

J m
-3

°C
-1

H L-3 0-1

Characteristic length

Degree days °C day 0 T

Evaporation kg s-1 M T
1

Radiation flux per unit frequency J m
-2

H L
-2

Radiation flux per unit wavelength J m
-3

s
-1

H L
-3

T
-1

Vapor pressure kg m
-1

8
-2

M L
-1

T
-2

Energy in a photon

Frequency s
-1

T
-1

Conduction W H T
1

4'

Acceleration of gravity m s
-2

L T
2

Crashof number



Symbol

APPENDIX I. Symbols, Units and Dimensions (continued)

Quantity Unit Dimension

h
c

h

k

Kb

Kg

k
1

k
2

L

L
1

L
2

M

M

m

Nu

Q

Convection coefficient

Planck's constant

Thermal conductivity

Boltzmann's constant '

Thermal conductance

Constant for leaf convection

Constant for evaporation flux in

leaf

Latent heat of evaporation

Length

Length

Mass

Metabolism

Molecular weight

Nusselt number

Wave number

Heat energy

W K
1

6.63 x 10
-34

J s

1
W m °C

-1

1.38 x 10
-23

J IC
71

-1
W °C

9.14 J m-2 °C-1 S

4
183 S

-
m
-1

J kg
-1

m

m

kg

W m
-2

gmole
-1

-
m

1

W m
-2

H T
-1

0
-1

H T

H L
-1

0

H 0
-1

0-1 ,-1

-2 -1 -

H L 0 T

P
T
-
2 L

-1

H M
-1

L

L

h

H
-1

L
-2

T
-]

M

L
-1

H L
-2

T
-1
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APPENDIX I. Symbols, Units and Dimensions (continued)

Symbol Quantity

Qa Absorbed radiation

Qe
Emitted radiation

R Gas constant.

R
a

Atmospheric radiation (longwave)

Rg GrOunl radiation (longwave)

R Shortwave radiation from the sun,

and sky

R
v

Respiration rate

Re Reynelds number

r.h. Relative humidity

r Resistance

r Reflectivity of the underlying

surface

r
e

Resistance to water vapor loss

r
t

Internal resistance of leaf

r(A) RefleCtivity at wavelength A

S Shortwave radiation from the sun

s Shortwave radiation from the sky

Unit Dimension

fi
W m

-2
H L

-2
T
-1

J mol
-1

K
-1 0-1

111

W m
2

H L
2
T
-1

W m
2

H L
-2

T
-1

W m
2

HL-2 T1

3 -1
L
3T- 1

MINN. l

W
-1

in *C L
2
T 0

.1.1

s m T L-1

sml T L1
A

- - =MI

W m
-2

H L
-2

W m
-2

L
-2

T



APPENDIX I, Symbols, Units and Dimensions (continued)

Symbol Quantity

T Temperature

T
B

Boundary temperature

T
a

Air temperature

T
amax

Maximum daily air temperature

T Minimum daily air temperature
amin

T
b

Body temperature

T
f

Fruit temperature

T
g

Ground temperature

Ti Leaf temperature

T
s

Surface temperature

T
t

Threshold temperature

T
w

Wall temperature

t Time

t(A) Transmittance at wavelength A

11 11

Unit Dimensior

°C 0

°C 0

oc
0

°C 0

°C 0

°C

°C 0

°C 0

°C 0

°C 0

oc 0

°C 0

s T

U Internal energy

-1
L

V Fluid velocity 78
in T

_1

V Vnlume m
3

L
3



APPENDIX I. Symbols, Units and Dimensions (continued)
.1

Symbol Quantity Unft Dimension

V
L

Volume of the lungs m
3

L
3

W Leaf dimension transverse to the

wind

m L

x Boundary layer thickness m L

z Depth m L

E Emittance ....

K Thermal diffusivity m
2

s
-1

L
2

T
-1

Wavelength

A
max

Wavelength of maximum radiation m L

v Kinematic viscosity m
2

s
-1

L
2

T
-1

P Density kg m
-3

M L
-3

a Stefan-Boltzmann constant 5.67 x 10
-8

W m
-2

K
-4

H L
-2

T
-1

0

U Fluid viscosity
-

kg m
1

s
-1

M L T
-1

= Mass

L"= Length A

= Time

0 = Temperature

H = M L2 T
-2
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